Being much shorter than the predominant multiple units, electric locomotives can suffer from a problem known as "gapping" - becoming marooned between supplies at breaks in the electrical supply and snatching at the couplings whilst moving as they come on and off the power. The latter places undue stress on couplings and has been known to cause separations of a train. Raworth overcame this by having a
motor–generator set (
booster) with a large
flywheel on the shaft between the two.
The traction current, instead of feeding the traction motors directly through the control assembly, powered a large motor which turned a shaft with the flywheel and fed into the generator. The output of the generator could be combined with the third rail power to reduce or boost the voltage applied to the traction motors. With the generator output polarity reversed, the control assembly could deliver around 1200 V DC by combining the generator output with the 650 V from the third rail to give positive 650 V
and negative 500-600 V - leading to the nickname "boosters". The flywheel ensured the generator continued to turn whilst no current was available from the third rail, thus ensuring a continuous supply to the traction motors.
Even while stationary, Class 70 locomotives produced a noticeable droning noise due to the booster-set turning inside the body. Two booster sets were fitted in each locomotive, one for each bogie. It was not sufficient to allow the locomotives to work "off the grid" as the load on the generator whilst under power meant it would quickly consume the stored
kinetic energy. They needed attentive driving, to ensure they were not brought to a halt on a gap and the booster set allowed to run down.
There were losses incurred in the conversion of electrical energy to kinetic and back again, but Raworth mitigated this in the control mechanism. Instead of having large, heavily built resistances in the power lines for the motors, the 26 taps on the controller changed resistances in the field coils of the generator. These correspondingly made the construction much lighter and more easily maintained. Instead of "burning-up" unrequired power, the controller simply altered how much power was generated.